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Abstract—This paper proposes new approaches to constructing equivalent Hamiltonian systems
for linear and nonlinear Lurie equations (differential equations containing the derivatives of
even orders only). The approaches are based on the transition from the linear part of the Lurie
equation to the normal forms of the corresponding Hamiltonian systems, with a subsequent
transformation of the resulting system. This scheme does not require complex and cumbersome
transformations of the original equation. The effectiveness of the formulas derived is illustrated
by examples.
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1. INTRODUCTION

Consider the differential equation

L

(
d

dt

)
y = M

(
d

dt

)
f(y), (1)

where

L(p) = p2n + a1p
2n−2 + a2p

2n−4 + . . .+ an−1p
2 + an,

M(p) = b0p
2m + b1p

2m−2 + . . . + bm−1p
2 + bm,

are coprime polynomials (0 � m < n) and f(y) is a scalar continuous function. Equation (1)
describes the dynamics of a single-loop control system consisting of a linear link with the fractional-
rational transfer function W (p) = M(p)/L(p) and a nonlinear feedback with the characteristic f(y);
for example, see [1, 2]. Note that equations of the form (1) are often called Lurie equations.

The polynomials L(p) and M(p) contain degrees of even orders only. Differential equations
of even orders arise in many problems of control theory, the theory of Hamiltonian systems, the
theory of integrable equations, spectral theory, etc. In studies of such equations, an important
direction is the problem of introducing a Hamiltonian structure to them. The availability of such a
structure (as a consequence, the existence of first integrals and various types of symmetries) allows
advancing significantly in the analysis of systems dynamics. The issues regarding the existence of a
Hamiltonian structure for many types of differential equations and, accordingly, the construction of
an equivalent Hamiltonian system for equations (1) in various problem statements were discussed
in several research works, e.g., [2–9]. The problem statements below are close to those considered
in [10, 11].

In this paper, we present new approaches to studying the above issues. The approaches are
based on the transition from the linear part of the Lurie equation to the normal forms of the
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corresponding Hamiltonian systems, with a subsequent transformation of the linear and nonlinear
systems. The results obtained lead to effective algorithms for constructing the Hamiltonian of the
system. The results can be applied to analyze the dynamics of systems described by differential
equations of even orders as well as the stability and bifurcations of equilibria and periodic solutions
of linear and nonlinear Lurie equations.

2. BACKGROUND

We recall some concepts of systems theory, control theory [1, 2, 7, 8], and the theory of Hamil-
tonian systems [3, 4].

2.1. The Equivalence of Systems

Let A and B be two systems described by the input-output-state equations. Assume that these
systems have the same space U of inputs u(t) and the same space Y of outputs y(t). We denote
by S and T the state spaces of systems A and B, respectively.

Systems A and B are said to be equivalent if, for each state α ∈ S, there exists a state β ∈ T
such that the outputs of systems A and B will coincide for the same inputs u(t) ∈ U and vice versa.
In this case, we will write A ∼ B.

2.2. On the Observability of Systems

Consider a dynamic system described by the equation

x′ = Ax+ ξu(t), y = (x(t), c), (2)

where A is a square matrix of order n; ξ, c ∈ Rn are fixed vectors; the symbol (x, c) indicates the
inner product of vectors x and c from Rn. In this system, u, y, and x denote the input, output,
and state, respectively.

Throughout this paper, vectors will be treated as column vectors unless they are explicitly stated
to represent row vectors in a particular formula.

We define a square matrix of order n:

D =

⎡⎢⎢⎢⎢⎢⎢⎣
c

A∗c
(A∗)2c

...
(A∗)n−1c

⎤⎥⎥⎥⎥⎥⎥⎦ , (3)

where A∗ means the transpose of A and the vectors c, A∗c, (A∗)2c, . . . , (A∗)n−1c are row vectors.
The matrixD is called the observability matrix of system (A.3). System (A.3) is said to be observable
if detD �= 0.

2.3. On Hamiltonian Systems

An autonomous Hamiltonian system is a dynamic system described by the equation

x′ = J∇H(x), x ∈ R2n, (4)

where

J =

[
0 I
−I 0

]
, ∇H(x) =

(
∂H

∂x1
, . . . ,

∂H

∂x2n

)T

, (5)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 1 2025



22 YUMAGULOV, IBRAGIMOVA

0 and I stand for zero and identity matrices, respectively, of order n, and H(x) is a scalar real
smooth called the Hamiltonian of system (4).

A linear autonomous Hamiltonian system (LAHS) is a system of the form

dx

dt
= JAx, x ∈ R2n, (6)

where A is a real square symmetric matrix of order 2n. The Hamiltonian of this system is given by

H(x) =
1

2
(Ax, x). (7)

Below, the matrix JA participating in system (6) will be called the Hamiltonian matrix . Note
its properties as follows:

G1) If the matrix JA has an eigenvalue λ, then the numbers −λ, λ, and −λ are also eigenvalues
of this matrix, with the same algebraic and geometric multiplicity and the same index.

G2) If the matrix JA has the eigenvalue λ = 0, then the algebraic multiplicity of this eigenvalue
is an even number.

G3) The characteristic polynomial of the matrix JA contains degrees of even orders only.

Each Hamiltonian matrix belongs to one and only one equivalence class of symplectically similar
matrices. In each such class, one representative, called the normal form, is often distinguished. The
kind of the normal form is determined by the properties of the root subspaces of the matrix JA.
We refer to [3, 9, 12, 13] for more details on the theory of normal forms and, in particular, the lists
of normal forms.

A specific feature of normal forms is that different normal forms may correspond to a given
set of eigenvalues with given multiplicities. As an illustration, consider fourth-order Hamiltonian
matrices having two pairs of prime pure imaginary eigenvalues ±ω1i and ±ω2i, where ω1 > 0 and
ω2 > 0. In this case, there are two kinds of normal forms:

JA =

⎡⎢⎢⎢⎣
0 0 ω1 0
0 0 0 σω2

−ω1 0 0 0
0 −σω2 0 0

⎤⎥⎥⎥⎦ , where σ = 1 or σ = −1. (8)

In the case σ = 1, the numbers ω1i and ω2i are called the eigenvalues of the first kind; in the case
σ = −1, they are called the eigenvalues of the first and second kind, respectively. No symplectic
transformations can reduce the normal form with σ = 1 to the normal form with σ = −1.

The above properties of Hamiltonian matrices determine many important qualitative character-
istics of Hamiltonian systems (linear and nonlinear), such as strong stability properties, stability
in the linear and nonlinear formulation, etc.; for example, see [9–15].

As will be shown below, due to this fact, the problem of constructing an equivalent Hamiltonian
system for equation (1) may have qualitatively different solutions, namely, the resulting Hamiltonian
systems (6) may have different normal forms.

3. THE LINEAR PROBLEM

3.1. The Standard Change of Variables

We discuss the problem of constructing an equivalent Hamiltonian system first for the linear
equation

L

(
d

dt

)
y = 0. (9)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 1 2025



LURIE EQUATIONS AND EQUIVALENT HAMILTONIAN SYSTEMS 23

With the standard change of variables

z1 = y, z2 = y′, . . . , z2n = y(2n−1), (10)

this equation is reduced to an equivalent system in the state space:

z′ = A0z, y = (z, c0), (11)

where z, c0, γ ∈ R2n, the symbol (z, c0) indicates the inner product of vectors, and

A0 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0

. . .

0 0 0 0 . . . 0 1
−an 0 −an−1 0 . . . −a1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , c0 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (12)

System (11) is Hamiltonian only for n = 1, i.e., when equation (9) takes the simplest form
y′′ + a1y = 0. If n � 2, system (11) is no longer Hamiltonian. From this point onwards, we as-
sume that n � 2.

3.2. Constructing the Hamiltonian System

Since the polynomial L(p) contains degrees of even orders only, the roots of the equation L(p) = 0
have properties similar to properties G1 and G2 of Hamiltonian matrices. Therefore, the polyno-
mial L(p) with this set of roots can be assigned one or more normal forms with the same set of
eigenvalues.

We propose the following construction scheme of an equivalent Hamiltonian system for equa-
tion (9).

At the first stage, the roots of the equation L(p) = 0 are used to determine possible normal
forms of the desired Hamiltonian system. One of the corresponding Hamiltonian matrices JA is
chosen.

The second stage is to define a nonzero vector c ∈ R2n and the Hamiltonian system

dx

dt
= JAx, y = (x(t), c). (13)

Theorem 1. Equation (9) and the Hamiltonian system (13) are equivalent iff system (13) is
observable.

This theorem can be supplemented by the following result. Let ỹ =

⎡⎢⎢⎢⎢⎣
y
y′
...

y(2n−1)

⎤⎥⎥⎥⎥⎦, where

y(k) denotes the kth-order derivative of the scalar function y = y(t).

Theorem 2. Assume that one of the possible normal forms of JA is chosen according to the
properties of the roots of the equation L(p) = 0. Assume also that the vector c is appropriately
chosen to make system (13) observable. Then the change of variables x = D−1ỹ, where D is the
observability matrix of system (13), reduces equation (9) to the equivalent Hamiltonian system (13)
with the Hamiltonian (7). In addition, the matrices A0 and JA are related by the equality A0 =
D(JA)D−1.

The proofs of Theorems 1 and 2 and other main results are postponed to the Appendix.
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Remark 1. According to Theorems 1 and 2, for equation (9), the problem of constructing an
equivalent Hamiltonian system in normal form may have a nonunique solution. In other words,
equation (9) can be reduced, via linear nondegenerate transformations, to qualitatively different
Hamiltonian systems of the form (13) in the sense that the corresponding Hamiltonian matrices
belong to different equivalence classes of symplectically similar matrices.

Note also that for equation (9), the problem of constructing an equivalent Hamiltonian system
with a particular normal form may be unsolvable. This situation arises, e.g., when the equation
L(p) = 0 has multiple roots. In this case, equation (9) may lead to such normal forms of Hamiltonian
matrices for which the corresponding system is unobservable for any vector c.

3.3. A Linear Link with Two Degrees of Freedom

As an illustration, consider the fourth-order Lurie equation

y′′′′ + ay′′ + by = 0, (14)

where the real coefficients a and b satisfy the conditions

a > 0, b > 0, d = a2 − 4b > 0. (15)

In this case, all the four roots of the characteristic equation

λ4 + aλ2 + b = 0

are different and pure imaginary of the form ±iω1, ±iω2, where the numbers ω1 > 0 and ω2 > 0
satisfy the equation ω4 − aω2 + b = 0, i.e.,

ω2
1 =

a+
√
d

2
, ω2

2 =
a−

√
d

2
. (16)

Now we discuss the construction of an equivalent Hamiltonian system for equation (14).

Let us utilize the above scheme. In the problem under consideration, equation (14) can be
reduced to two different normal forms of the desired Hamiltonian system, namely, the matrix (8)
for σ = 1 and σ = −1. With an appropriate choice of the vector c ∈ R4, it is possible to obtain two
qualitatively different LAHSs (13) with the normal form (8) of the matrix JA that are equivalent
to equation (14) both for σ = 1 and for σ = −1.

To show this fact, let c = (c1, c2, 0, 0) be some vector such that c1c2 �= 0. Then equation (14)
can be reduced to the Hamiltonian system (13) via a linear nondegenerate transformation.

Indeed, to apply Theorem 1, we should establish the observability of system (13) with the normal
form (8) of the matrix JA. We have

(JA)∗c =

⎡⎢⎢⎢⎣
0
0

ω1c1
σω2c2

⎤⎥⎥⎥⎦ , (JA∗)2c =

⎡⎢⎢⎢⎣
−ω2

1c1

−σω2
2c2

0
0

⎤⎥⎥⎥⎦ , (JA∗)3c =

⎡⎢⎢⎢⎣
0
0

−ω3
1c1

−σω3
2c2

⎤⎥⎥⎥⎦ . (17)

Hence, the matrix (3) takes the form

D(c) =

⎡⎢⎢⎢⎢⎣
c1 c2 0 0

0 0 ω1c1 σω2c2

−ω2
1c1 −σω2

2c2 0 0

0 0 −ω3
1c1 −σω3

2c2

⎤⎥⎥⎥⎥⎦ , (18)
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and

detD(c) =

{
−c21c

2
2ω1ω2(ω

2
1 − ω2

2)
2 if σ = 1

c21c
2
2ω1ω2(ω

4
1 − ω4

2) if σ = −1.

This means that detD(c) �= 0 for c1c2 �= 0 and ω1 �= ω2. Thus, the matrix D(c) is nonsingular (re-
versible), and system (13) is observable accordingly. By Theorem 1, equation (14) and system (13)

are equivalent. By Theorem 2, the change of variables ỹ = D(c)x, where ỹ =

⎡⎢⎢⎢⎣
y
y′

y′′

y′′′

⎤⎥⎥⎥⎦, reduces sys-
tem (13) to the scalar differential equation (14). The solutions y(t) and x(t) of equation (14) and
system (13) are related by the equality y(t) = c1x1(t) + c2x2(t).

Thus, an equivalent Hamiltonian system for the linear equation (14) has been constructed.
Once again, we underline that equation (14) can be reduced to two different Hamiltonian repre-
sentations (13) with the normal forms (8). Additional information about the object under study is
required for a particular choice of the normal form.

EXAMPLE 1

The planar bounded circular three-body problem is one of the most interesting problems in ce-
lestial mechanics; for example, see [13, 16–18]. In the linear statement, the problem of investigating
the motion of a small-mass body in the neighborhood of triangular libration points leads to the
differential equation

y′′′′ + y′′ +
27

4
μ(1− μ)y = 0. (19)

Its characteristic equation has the form

λ4 + λ2 +
27

4
μ(1− μ) = 0. (20)

Following the above scheme, we pass from equation (19) to an equivalent LAHS of the form (13).

Let μ ∈ (0, μ∗)
⋃
(1− μ∗, 1), where μ∗ = 1

2 −
√
69
18 ≈ 0.0385. In this case, all the four roots of equa-

tion (20) are pure imaginary: λ1,2 = ±ω1(μ)i, λ3,4 = ±ω2(μ)i; here

ω1(μ) =

√
1

2
− 1

2

√
1− 27μ(1 − μ), ω2(μ) =

√
1

2
+

1

2

√
1− 27μ(1− μ).

Hence, there are two kinds of the normal forms (8). For a particular kind determined from certain
considerations, we choose, e.g., the vector c = (1, 1, 0, 0, 0). Using (17) and (18), we construct the
matrix D = D(c), which turns out to be nonsingular. Consequently, with the change of variables
ỹ = D(c)x, equation (19) can be reduced to an equivalent Hamiltonian system of the form (13),
and their solutions y(t) and x(t) are related by the equality y(t) = x1(t) + x2(t).

Note that according to the analysis of the original three-body problem statement [13], one should
take σ = −1 in the normal form (8).

4. THE NONLINEAR PROBLEM

4.1. Main Results

Now we discuss the problem of constructing an equivalent Hamiltonian system for the nonlinear
Lurie equation (1).
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26 YUMAGULOV, IBRAGIMOVA

As in the linear problem, the first stage is to determine possible normal forms of the linear
part of the desired Hamiltonian system using the roots of the equation L(p) = 0. And one of the
corresponding Hamiltonian matrices JA is chosen.

At the second stage, it is necessary to define a nonzero vector c ∈ R2n and the linear Hamil-
tonian system (13). Assume that this system is observable. Let D = D(c) be the corresponding
observability matrix.

We define the vectors

γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
γ2
0
γ4
...
0
γ2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ỹ =

⎡⎢⎢⎢⎢⎣
y
y′
...

y(2n−1)

⎤⎥⎥⎥⎥⎦ , f̃(y) =

⎡⎢⎢⎢⎢⎢⎢⎣
f(y)

(f(y))′

(f(y))′′
...

(f(y))(2n−3)

⎤⎥⎥⎥⎥⎥⎥⎦ , (21)

where the t-derivatives y(k) and (f(y))(k) of given functions y = y(t) and f(y(t)), respectively; the
coordinates of the vector γ are given by

γ2 = γ4 = . . . = γ2n−2m−2 = 0, γ2n−2m = b0, (22)

γ2n−2m+2 + γ2n−2ma1 = b1, . . . , γ2n + γ2n−2a1 + . . . + γ2n−2mam = bm.

Also, we define a rectangular matrix of order 2n × (2n− 2) :

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0
γ2 0 0 0 . . . 0 0
0 γ2 0 0 . . . 0 0

. . .

γ2n−2 0 γ2n−4 0 . . . 0 0

0 γ2n−2 0 γ2n−4 . . . 0 γ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Lemma 1. Assume that the linear system (13) is observable. Then the change of variables

x = (D(c))−1[ỹ − T f̃(y)] (23)

reduces equation (1) to the system

x′ = JAx+ ξf(y), y = (x(t), c), (24)

where the matrix JA is the chosen normal form and ξ = (D(c))−1γ.

Lemma 1 can be verified by direct calculation.

Note that equation (1) and system (24) are equivalent. However, the nonlinear system (24)
obtained via the change (23) is not necessarily Hamiltonian.

Recall that the vector c is chosen only from the observability condition of the linear system (13).
This provides much freedom when choosing the vector c. As it turns out, under some additional
conditions imposed on the vector c, the nonlinear system (24) will be Hamiltonian. In particular,
we have the following result.

Lemma 2. Assume that the vector c is chosen based on two requirements:
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• The linear system (13) is observable.

• For some real number α,

γ = αD(c)Jc, (25)

where D(c) is the observability matrix of system (13), γ is the vector (21), and J is the
matrix (5).

Then the change of variables (23) reduces the nonlinear equation (1) to a Hamiltonian system of
the form (24) with the Hamiltonian

H(x) =
1

2
(Ax, x) + αF ((x, c)) , (26)

where F (y) is the primitive of the function f(y), i.e., F ′(y) = f(y).

Remark 2. Equality (25) in expanded form comes to a system of n linear algebraic equations
with the 2n unknowns

αc21, αc
2
2, . . . , αc

2
2n

and the parameter α. These equations include the coefficients determining the kind of the chosen
normal form. As a result, the system of equations (25) is solvable only for one choice of the normal
form. In other words, in contrast to the linear problem, the nonlinear one has a uniquely determined
kind of the normal form of the Hamiltonian system constructed. This fact will be proved below for
systems with two degrees of freedom.

Thus, we have the following result.

Theorem 3. Assume that a possible normal form JA is chosen in accordance with the properties
of the roots of the equation L(p) = 0. Let the vector c be chosen so that:

1) The linear system (13) is observable.

2) Equality (25) holds for some α.

Then the change of variables (23) reduces equation (1) to the equivalent Hamiltonian system (24)
with the Hamiltonian (26), and the kind of its normal form is uniquely determined.

4.2. Equations with Two Degrees of Freedom

As a basic application, consider the fourth-order equation

L

(
d

dt

)
y = M

(
d

dt

)
f(y), (27)

where

L(p) = p4 + ap2 + b, M(p) = b0p
2 + b2 (28)

are coprime real polynomials and f(y) is a scalar continuous function. Equations of the form (27)
are often called equations with two degrees of freedom.

As in Section 3.3, by assumption, the coefficients a and b of the polynomial L(p) satisfy (15).
Hence, all the four roots of the polynomial L(p) are pure imaginary of the form ±iω1, ±iω2, where
the numbers ω1 > 0 and ω2 > 0 are given by (16). We will construct an equivalent Hamiltonian
system for equation (27) using Theorem 3.

As noted in Section 3.3, two different normal forms of the desired Hamiltonian system correspond
to the polynomial L(p), namely, the matrices (8) for σ = 1 and σ = −1. By analogy with Section 3.3,
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28 YUMAGULOV, IBRAGIMOVA

we choose a vector c = (c1, c2, 0, 0, 0) such that c1c2 �= 0. In this case, the linear system (13) is
observable.

It remains to ensure condition 2) of Theorem 3, i.e., choose the vector c so that equality (25)
holds. In this equality, D(c) is the matrix (18), and the four-dimensional vector γ is given by (21)
and (22) with respect to equation (27):

γ =

⎡⎢⎢⎢⎣
0
γ2
0
γ4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
b0
0

b2 − ab0

⎤⎥⎥⎥⎦ .

Therefore, equality (25) comes to the system of two equations{
α(ω1c

2
1 + σω2c

2
2) = −γ2

α(ω3
1c

2
1 + σω3

2c
2
2) = γ4

with the unknowns αc21 and αc22. Hence, we obtain

αc21 =
ω2
2γ2 + γ4

ω1(ω2
1 − ω2

2)
, αc22 = − ω2

1γ2 + γ4
σω2(ω2

1 − ω2
2)
.

Due to the coprimeness of the polynomials (28),

(ω2
1γ2 + γ4)(ω

2
2γ2 + γ4) �= 0.

Therefore, α �= 0 and (
c1
c2

)2

= −σ
ω2

ω1
κ,

where

κ =
ω2
2γ2 + γ4

ω2
1γ2 + γ4

. (29)

Thus, equation (25) is solvable only for σ = 1 (if κ < 0) or only for σ = −1 (if κ > 0).

Let κ < 0 (κ > 0). In this case, the following values can be taken as the solution of equation (25):

c1 = 1, c2 =

√
− ω1

κω2

(
c2 =

√
ω1

κω2

)
, α =

ω2
2γ2 + γ4

ω1(ω2
1 − ω2

2)
. (30)

In other words, the following result has been established.

Theorem 4. Assume that κ < 0 (κ > 0). Let the numbers α, c1, and c2 be given by (30). Then
the change of variables (23) reduces equation (27) to the equivalent Hamiltonian system (24) with
the Hamiltonian (26):

H(x) =
1

2
(Ax, x) + αF (x1c1 + x2c2),

where F (y) is the primitive of the function f(y), i.e., F ′(y) = f(y). In addition, the kind of the
normal form (8) is uniquely determined: σ = 1 in the case κ < 0 (σ = −1 in the case κ > 0).
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EXAMPLE 2

Consider equation (27) of the form

y′′′′ + 5y′′ + 4y = (f(y))′′ + 3f(y). (31)

In other words, we have the polynomials (28) with a = 5, b = 4, b0 = 1, and b2 = 3. Then ω1 = 2

and ω2 = 1, and the vector γ is γ =

⎡⎢⎢⎢⎣
0
1
0
−2

⎤⎥⎥⎥⎦ , i.e., γ2 = 1 and γ4 = −2.

Formula (29) yields κ = −1/2 < 0. By Theorem 4, the kind of the normal form (8) is uniquely
determined: σ = 1. Next, the values (30) are c1 = 1, c2 = 2, and α = −1/6.

According to Theorem 4, the change of variables (23) with the matrix D(c) (18), ω1 = 2, ω2 = 1,
σ = 1, c1 = 1, and c2 = 2 reduces equation (31) to the equivalent Hamiltonian system (24) with

the matrix JA (8) with ω1 = 2, ω2 = 1, σ = 1, and the vector ξ = (D(c))−1γ equal to ξ =

⎡⎢⎢⎢⎣
0
0
1/6
1/3

⎤⎥⎥⎥⎦.
The Hamiltonian of this system is

H(x) =
2x21 + x22 + 2x23 + x24

2
− 1

6
F (x1 + 2x2).

5. CONCLUSIONS

This paper has proposed new approaches to constructing equivalent Hamiltonian systems for
linear and nonlinear Lurie equations (differential equations containing derivatives of even orders
only). The approaches are based on the transition from the linear part of the Lurie equation to the
normal forms of the corresponding Hamiltonian systems, with a subsequent transformation of the
resulting system. This scheme does not require complex and cumbersome transformations of the
original equation. It has been demonstrated that, in the linear case, the problem of constructing
equivalent Hamiltonian systems can lead to qualitatively different systems. At the same time,
for nonlinear systems, the above problem is uniquely solvable in a natural sense. The Appendix
contains similar results in a general formulation (without requiring that the original equations
contain derivatives of even orders only). The main results have been reduced to computational
formulas and algorithms.
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APPENDIX

Auxiliary Constructs

The proofs of the main theoretical results of this paper are based on the following auxiliary
assertions of a general nature. They concern not only Hamiltonian systems and are of independent
interest.
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Consider a system described by the nth-order differential equation

L

(
d

dt

)
y = M

(
d

dt

)
u(t), (A.1)

where

L(p) = pn + a1p
n−1 + . . . + an−1p+ an,

M(p) = b0p
m + b1p

m−1 + . . . + bm
(A.2)

are coprime real polynomials of degrees n and m (n > m � 0).

For equation (A.1), it is required to construct an equivalent system described by the equations

x′ = Ax+ ξu(t), y = (x(t), c), (A.3)

where A is a square matrix of order n, ξ, c ∈ Rn are fixed vectors, and the symbol (x, c) indicates the
inner product of vectors x and c from Rn. The inverse problem is to construct from system (A.3)
an equivalent system described by the differential equation (A.1).

The simplest transition is from (A.1) to the equivalent system

z′ = A0z + γu(t), y = (z(t), c0), (A.4)

where c0 = (1, 0, 0, . . . , 0),

A0 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .

0 0 0 . . . 0 1
−an −an−1 −an−2 . . . −a2 −a1

⎤⎥⎥⎥⎥⎥⎥⎦ , z =

⎡⎢⎢⎢⎢⎣
z1
z2
...
zn

⎤⎥⎥⎥⎥⎦ , γ =

⎡⎢⎢⎢⎢⎣
γ1
γ2
...
γn

⎤⎥⎥⎥⎥⎦ ,

and the coordinates of the vector γ are given by

γ1 = γ2 = . . . = γn−m−1 = 0, γn−m = b0, γn−m+1 + γn−ma1 = b1, (A.5)

. . . , γn + γn−1a1 + . . .+ γn−mam = bm.

Direct calculation shows that the transition from equation (A.1) to system (A.4) can be imple-
mented via the change of variables z = ỹ − T ũ, where

ỹ =

⎡⎢⎢⎢⎢⎣
y
y′
...

y(n−1)

⎤⎥⎥⎥⎥⎦ , ũ =

⎡⎢⎢⎢⎢⎣
u
u′
...

u(n−2)

⎤⎥⎥⎥⎥⎦ , (A.6)

and the rectangular matrix T of dimensions n× (n− 1) has the form

T =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0
γ1 0 0 . . . 0
γ2 γ1 0 . . . 0

. . .

γn−1 γn−2 γn−3 . . . γ1

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.7)
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Similar problems arise for nonlinear systems. In them, the analog of equation (A.1) is a nonlinear
feedback system described by

L

(
d

dt

)
y = M

(
d

dt

)
f(y),

where L(p) and M(p) are the polynomials (A.2) and f(y) is a scalar continuous function. The
analog of system (A.3) is the one described by

x′ = Ax+ ξf(y), y = (x(t), c).

Various issues related to these problems were discussed in many works. Let us emphasize the
fundamental monograph [8] with a detailed analysis of basic concepts (“system,” “equivalence,”
“transfer function”, etc.) and, moreover, constructive methods for designing equivalent systems
(within the linear theory).

To study the problems formulated here, we consider the following systems described by input-
output-state equations:

• system A (A.1),

• system B described by the equations

x′ = Ax+ ξu(t), w = (x(t), c), (A.8)

• system C described by the equations

z′ = A0z + γu(t), v = (z(t), c0). (A.9)

Note that systems (A.8) and (A.9) are the same systems (A.3) and (A.4). They are presented
in a new form only to avoid confusion with the notation of the outputs of the systems under
consideration.

Let the input space of systems A, B, and C be the set Cm-smooth functions u(t), and let their
state space be the space Rn. For a given input u(t) and a given initial state ỹ0 = (y0, y1, . . . , yn−1)
(at the time t = 0), we define the output y(t) of system A as the solution of the Cauchy problem⎧⎪⎨⎪⎩

L

(
d

dt

)
y = M

(
d

dt

)
u(t)

y(0) = y0, y
′(0) = y1, . . . , y

(n−1)(0) = yn−1.

For a given input u(t) and a given initial state x0 ∈ Rn (at the time t = 0), we define the output w(t)
of system B by the equality w(t) = (x(t), c), where x(t) is the solution of the Cauchy problem{

x′ = Ax+ ξu(t)
x(0) = x0.

The output v(t) of system C is defined by analogy.

The following assertions are true.

Theorem 5. Systems A and C are equivalent.

Theorem 6. Systems B and C are equivalent iff system B is observable, A0 = DAD−1, and
γ = Dξ, where D denotes the observability matrix of system B and the vector γ consists of the
coordinates (A.5).

Assume that systems B and C are equivalent. Then system (A.4) is reducible to system (A.3)
via the nondegenerate change of variables x = D−1z.
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Theorem 7. Systems A and B are equivalent iff system B is observable, A0 = DAD−1, and
γ = Dξ.

Assume that systems A and B are equivalent. Then equation (A.1) is reducible to system (A.3)
via the change of variables

x = D−1(ỹ − T ũ),

where the matrix T and the vectors ỹ and ũ are given by (A.7) and (A.6), respectively.

Theorem 5 is a well-known result; for example, see [2, 7, 8]. The validity of Theorem 7 follows
from Theorems 5 and 6. Theorem 6 is established by standard methods of systems theory.

Proof of Theorem 1. Necessity. Let equation (9) and the Hamiltonian system (13) be equivalent.
Then, by Theorem 7, system (13) is observable and the equality A0 = D(JA)D−1 holds with the
matrix A0 (12) and the observability matrix D of system (13).

Sufficiency. Let system (13) be observable. It is required to prove the equivalence of equation (9)
and the Hamiltonian system (13). For this purpose, we show that the output y(t) = (x(t), c) of
system (13) is also that of equation (9) under an initial state y0 such that y0 = (x(0), c) and,
conversely, that each output y(t) of equation (9) is also the output of system (13) under an initial
state x0 such that y0 = (x0, c).

Let us restrict the considerations to the case n = 2 (i.e., system (13) is four-dimensional). Then
equation (9) takes the form (14) and, therefore, L(p) = p4 + ap2 + b.

For the output y(t) = (x(t), c) of system (13), we have

y′ = (x′, c) = (x,A∗c), y′′ = (x, (A∗)2c), y′′′′ = (x, (A∗)4c).

Hence,

y′′′′ + ay′′ + by = (x, (A∗)4c) + (x, (A∗)2c)a+ (x, c)b = (x, [(A∗)4 + a(A∗)2 + bI]c) = 0,

since the matrix A (and, consequently, the transposed matrix A∗) satisfies its characteristic equation
p4 + ap2 + b = 0. Thus, the function y(t) = (x(t), c) is the solution of equation (9).

Now, let y(t) be the output of equation (14); the corresponding initial state is ỹ0 = (y0, y1, y2, y3).
We determine the initial state x0 of the four-dimensional system (13) from the system of equations

(x0, c) = y0, (x0, A
∗c) = y1, (x0, (A

∗)2c) = y2, (x0, (A
∗)3c) = y3

or (which is the same) from the equation D(c)x0 = ỹ0. Due to the observability of system (13), this
equation has the unique solution x0 = (D(c))−1ỹ0. Obviously, the output of system (13) under this
initial state x0 coincides with the function y(t).

The proof of Theorem 1 is complete.

Proof of Theorem 2. This result is immediate from Theorem 7.

Proof of Lemma 2. According to Lemma 1, the change of variables (23) reduces equation (1) to
system (24). To establish Lemma 2, it remains to show that the function (26) is the Hamiltonian
of system (24), i.e., the validity of the relation

J∇H(x) = JAx+ ξf((c, x)).

Since J∇H(x) = JAx+ αJ∇F ((x, c)), we have to verify the equality

αJ∇F ((x, c)) = ξf((c, x)).

We have ∇F ((x, c)) = f((c, x))c, which yields J∇F ((x, c)) = f((c, x))Jc. Thus, it is necessary
to show αJc = ξ. In turn, this equality follows from (25) and the relation ξ = D−1γ (see Lemma 1).

The proof of Lemma 2 is complete.
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